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"A Introduction

* Previous lectures:
— From world to image
— Homogeneous coordinates
— Intrinsic and extrinsic camera parameters
— Camera calibration, P-matrix estimation

* Today: (slides partly based on Marc Pollefeys)
— Homographies
— Homography estimation

— Applications: panorama stitching, rotating camera, pose estimation
from planar surfaces
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Reminder: homogeneous coordinates

* Allow to manipulate n-dim vectors in a n+1-dim space
* Forn=2:R?— P2

(z,y) =

Converting to homogeneous
image coordinates

x
Y
1

3 entries, but only 2
degrees of freedom
(DOF)

y | = (z/w,y/w)

Converting from homogeneous
image coordinates

X
* Infinite points are represented with w=0 (6 : % ,Oj — (oo, oo,O)

Where is this useful in computer vision?
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Reminder: homogeneous coordinates

Unknown scale
factor!

A vector in P is just a representative of an equivalence class of vectors

Everything is up-to-scale!
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Follow-up: intrinsic parameters

Complete Distortion Model
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'm Follow-up: extrinsic parameters and P-matrix
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m, = P(m,)=(KoDoP,oT)(m,)

“proportional to” P does not include
lens distortion!

This makes it a
nonlinear function.

How do c, and w_relate?  We = —lewCuw



’m Follow-up: extrinsic parameters and P-matrix
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P does not include
lens distortion!

This makes it a
nonlinear function.

How do m,, and m_relate?

my, = ngmc + Cy
or

me = Reymy, + w
w ???

W, = — Rcu-' Cw

In matrix form:
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Definition:

/

A 2D homography is an invertible mapping h from P2 to itself
such that three points Xx;,X,,X; lie on the same line if and only

if h(x,),h(x,),h(x;) do.

Theorem:

A mapping h: P2—P? is a homography if and only if there
exist a non-singular 3x3 matrix H such that for any point in P2
represented by a vector X it is true that h(x)=Hx

Definition: Homography

hy,
h21

i h31

h12
h22
h32

h13
h23
h33

X'=HX

8DOF

Homography=projective transformation=projectivity=collineation

>
' . Ll 2D homography (projective transformation)

Line
preserving




" General homography

Note: homographies are not restricted to P2

General definition:

A homography is a non-singular, line preserving,
projective mapping h: P" — P",

It is represented by a square (n + 1)-dim matrix
with (n + 1)2-1 DOF

Now back to the 2D case...
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.m Homographies in computer vision

Rotating/translating camera, planar world

X (X))
(xyA =xoPX = K[rrwd | | =H[Y
1 d )

What happens to the P-matrix, if Z is assumed zero?
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Homographies in computer vision

Rotating camera, arbitrary world

\

image L
I

\\ ,W ,

>

image 2

oc KRK *x'= HXx'

(x,y1) =xoc PX =K(rr,r

What happens to the P-matrix, if t is assumed zero? 1
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" Transformation hierarchy: isometries

(iso=same, metric=measure)

X\ |[ecos@ -—sind t | x
y'|=|&sing cos@ t |y =71
1)1 O 0 1\1

orientation preserving: ¢=1
orientation reversing: c=-1

, R t .
X=HgX= N 1x R'R=I

3DOF (1 rotation, 2 translation)

special cases: pure rotation, pure translation °

Invariants: length, angle, area | °

12
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. kl Transformation hierarchy: similarities

X'\ [scos@® -—ssingd t | x (isometry + scale)
y'|=|ssing scosd t |y
1)1 O 0 11
X'=H x:{SR t}x T
s o7 1 R R=I o
q | .
4DOF (1 scale, 1 rotation, 2 translation) "

also know as equi-form (shape preserving)
metric structure = structure up to similarity (in literature)

Invariants: ratios of length, angle, ratios of areas,
parallel lines
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’ . LI Transformation hierarchy: affine transformations

XV e &, t]x

Yi=lay 8, t |y
1 i 0 0 1_ 1
TN :{A t y deformation

A 0" 1

6DOF (2 scale, 2 rotation, 2 translation)

non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths,
ratios of areas

14
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om Transformation hierarchy: homographies

N N N
11 12 13 ng
Aty 1
Hpo=| Ny Ny Ny (= _T
\" \"
Changes \ LR 133/
homogeneous 4
coordinate! \
A t T 1Il \‘\
X'=H,X=| . X v=(v,V,) N
\Y \" | e

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)

Acts non-homogeneous over the plane

Allows to observe
vanishing points,

Invariants: cross-ratio of four poin n aline .
ariants: cross-ratio of four points o horizon

(ratio of ratio)

15
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A square transforms to:

Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof

12
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2D transformation hierarchy
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R 4
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Before:
— What is a homography and how does it act on vectors/points
Now:
— How to estimate a homography from point correspondences
— Same procedure as for P-matrix

17
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I Homography estimation

* Estimate homography from point correspondences between:
— two images H
— model plane and image

* Assumption: planar motion! F
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" Homography estimation

Homography mapping from image to image
(holds under planar camera motion as mentioned before):

X'oc HX

19
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) - A Homography estimation

* Equation for one point correspondence i: i row of \
H _
o L -1
Xi’ N, P N3 || X L
' T
AlYil=|hy hy hy |y AX;=HX; =|h; X
T
B 1 . B ’]31 ’]32 133 L 1 i Homogeneous i ’]3 |

coordinate, might be 1

9 entries, 8 degrees of freedom

(scale is arbitrary) T T\
(yh?'x, —wh?'x,
' — N T T
XiXHXi =0 X;XHXi _ erhl Xi_xir,]?, X.
T T
7 x'h? x. —y'h! x.
0" -wx yx |[h" SR
T T T 2
Wi’Xi O o Xi’Xi h — O 3 equations, only 2 linearly
vl T T AT 13 independent, drop third row
A IO T A .
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A Direct linear transform

h=0 = Ah=0

H has 8 DOF (9 parameters, but scale is arbitrary)

One correspondence gives two linearly independent equations

Four matches needed for a minimal solution (null space of 8x9 matrix)
More points: search for “best” according to some cost function

21
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' A Direct linear transform

* No exact solution because of inexact measurements due to noise

* With n correspondences: size A is 2nx9, rank most likely not 8

n

* Find approximate solution
— Additional constraint needed to avoid O, e.g. HhH =1

— ANh =0 not possible, so minimize HAhH

h=0 Ah=0

22
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' DLT algorithm

Objective

Given n24 2D to 2D point correspondences {x.<>x.'},
determine the 2D homography matrix H such that x,’=Hx;

Algorithm

(i)  For each correspondence x, <>x,’ compute A.. Usually only
two first rows needed.

(i)  Assemble n 2x9 matrices A, into a single 2nx9 matrix A

(iii) Obtain SVD of A. Solution for h is last column of V,
=singular value of A
=eigen vector to the smallest eigen value of ATA

(iv) Determine H from h

23
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N Inhomogeneous solution

Since h can only be computed up to scale, impose
constraint pick h=1, e.g. hy=1, and solve for 8-vector

h =
XWoywe o ww 0 0 0 XX Y% WX’

{0 0 0 =xW' —yw' —Ww' XY Yiyi}~ (_Wiyilj
Can be solved using linear least-squares

However, if hy=0 this approach fails
Also poor results if hy close to zero
Therefore, not recommended

24



And what now?

What can we do when knowing the homography
between two images



Application (1): panorama stitching

Panorama stitching:
1.

2.
3.
4

Undistort images
Find point correspondences between images
Compute homography H
Resample:

1. Loop overimage 1l

2. Project into image 2 using H

3. Bilinear interpolation in image 2

26
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N Application (2): camera pose estimation

Assuming that K (intrinsic calibration matrix) is known,
derive the 3D camera pose from H

Enables augmentation of 3D virtual objects (augmented reality)
— Set virtual camera to real camera
— Render virtual scene
— Compose with real image

Enables localization/navigation
Recall the two cases of planar motion:

— purely rotating camera, arbitrary scene
— Rotating and translating camera, planar scene

27
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Camera pose estimation

* Purely rotating camera:

x~K[I| 0|X

- K[R | o]X ‘ H, ~ KR,K*
KRK“'K|I | 0|X

~ KRK 'x
~ Hx

= Movie

28
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' - :l Camera pose estimation

* Planar scene (example marker tracker, applies to any planar scene):

29
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' " Camera pose estimation

Assume all points lie in one plane with Z=0:

X =(X,Y,0,1) H = )\K [1‘11‘21‘]
x = PX K'H = )\ [Fll‘gt]

— K[I‘ll"grgt] (

X
= K [rll‘gt] Y
1

o

>

—r, and r, are unit vectors = find lambda
—Use this to compute t
—Rotation matrices are orthogonal = find r3

N = O X

P:K{l’l ro (I’1XI’2) t}

30
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A Problems
* Problem:
— The vectors r; and r, might not yield the same lambda
* Solution:
— Use the average value
Problem:

— The estimated rotation matrix might not be orthogonal

Solution: orthogonalize R’
— Obtain SVD = R’=UWVT
— Set singular values to 1 = R=UVT

31



Example: marker tracker

Video-input

-

Pattern recognition
(point correspondences
from 4 corners)

Homography = 3D
pose

-

Rendering of the Synthesis and
virtual object overlay

32
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A Example: natural feature tracking

Life image with augmentations Virtual scene

33
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A References

Homography estimation from planes:

— Zhang: Flexible camera calibration by viewing a plane from unknown
orientations, ICCV, 1999.

Homography estimation from purely rotating camera

— Hartley: Self-Calibration from Multiple Views with a Rotating Camera,
ECCV, 1994

— Brown and Lowe: Recognizing Panoramas, ICCV, 2003.
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Thank you!

Next lecture:
Linear/nonlinear/robust estimation techniques



