2D projective transformations (homographies)

Christiano Gava

christiano.gava@dfki.de

Gabriele Bleser

gabriele.bleser@dfki.de

Introduction

- Previous lectures:
 - From world to image
 - Homogeneous coordinates
 - Intrinsic and extrinsic camera parameters
 - Camera calibration, P-matrix estimation
- Today: (slides partly based on Marc Pollefeys)
 - Homographies
 - Homography estimation
 - Applications: panorama stitching, rotating camera, pose estimation from planar surfaces

Reminder: homogeneous coordinates

- Allow to manipulate n-dim vectors in a n+1-dim space
- For n=2: $R^2 \rightarrow P^2$

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

Converting *to* homogeneous image coordinates

3 entries, but only 2 degrees of freedom (DOF)

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Converting *from* homogeneous image coordinates

• Infinite points are represented with w=0
$$\left(\frac{x}{0}, \frac{y}{0}, 0\right) \Rightarrow (\infty, \infty, 0)$$

Where is this useful in computer vision?

Reminder: homogeneous coordinates

- A vector in P is just a representative of an equivalence class of vectors
- Everything is up-to-scale!

Follow-up: intrinsic parameters

$$\begin{bmatrix} x_d \\ y_d \end{bmatrix} = \underbrace{(1 + \kappa_1 r^2 + \kappa_2 r^4 + \kappa_3 r^6) \begin{bmatrix} x_n \\ y_n \end{bmatrix}}_{\text{radial distortion}}$$

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} f_x & s_\alpha & h_x \\ 0 & f_y & h_y \\ 0 & 0 & 1 \end{bmatrix}}_{K} \begin{bmatrix} x_d \\ y_d \\ 1 \end{bmatrix}$$
 Distorted coordinats

Follow-up: extrinsic parameters and P-matrix

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} R_{cw} & \mathbf{w}_c \\ \mathbf{0}_3^T & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} \propto z_c \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} f_x & s_\alpha & h_x \\ 0 & f_y & h_y \\ 0 & 0 & 1 \end{bmatrix}}_{} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{} \begin{bmatrix} R_{cw} & \mathbf{w}_c \\ \mathbf{0}_3^T & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

"proportional to"

P does not include lens distortion!

This makes it a nonlinear function.

$$\mathbf{m}_p = \mathcal{P}(\mathbf{m}_w) = (\mathcal{K} \circ \mathcal{D} \circ \mathcal{P}_n \circ \mathcal{T})(\mathbf{m}_w)$$

How do c_w and w_c relate?

$$\mathbf{w}_c = -R_{cw}\mathbf{c}_w$$

Follow-up: extrinsic parameters and P-matrix

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} \propto z_c \begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} f_x & s_\alpha & h_x \\ 0 & f_y & h_y \\ 0 & 0 & 1 \end{bmatrix}}_{P} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{P} \begin{bmatrix} R_{cw} & \mathbf{w}_c \\ \mathbf{0}_3^T & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

P does not include lens distortion!

This makes it a nonlinear function.

How do m_w and m_c relate?

$$m_{w} = R_{cw}^{T} m_{c} + c_{w}$$

or

 $m_{c} = R_{cw} m_{w} + w_{c}$
 \mathbf{w}_{c} ???

 $\mathbf{w}_{c} = -R_{cw} \mathbf{c}_{w}$

In matrix form:

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} R_{cw} & \mathbf{w}_c \\ \mathbf{0}_3^T & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

2D homography (projective transformation)

Definition:

Line preserving

A 2D homography is an invertible mapping h from P^2 to itself such that three points x_1, x_2, x_3 lie on the same line if and only if $h(x_1), h(x_2), h(x_3)$ do.

Theorem:

A mapping $h: P^2 \rightarrow P^2$ is a homography if and only if there exist a non-singular 3x3 matrix **H** such that for any point in P^2 represented by a vector **x** it is true that h(x) = Hx

Definition: Homography

$$\begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 or $x' = \mathbf{H} \times \mathbf{K}$

Homography=projective transformation=projectivity=collineation

General homography

- Note: homographies are not restricted to P²
- General definition:
 A homography is a non-singular, line preserving, projective mapping h: Pⁿ → Pⁿ.
 It is represented by a square (n + 1)-dim matrix with (n + 1)²-1 DOF
- Now back to the 2D case...
- Mapping between planes

Homographies in computer vision

Rotating/translating camera, planar world

Homographies in computer vision

Rotating camera, arbitrary world

$$(x, y, 1)^{T} = x \propto PX = K(r_{1}r_{2}r_{3}t)\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \propto KRK^{-1}x' = Hx'$$

Transformation hierarchy: isometries

(*iso*=same, *metric*=measure)

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} \varepsilon \cos \theta & -\sin \theta & t_x \\ \varepsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 $\varepsilon = \pm 1$

$$\varepsilon = \pm 1$$

orientation preserving: $\varepsilon = 1$ orientation reversing: $\varepsilon = -1$

$$\mathbf{x'} = \mathbf{H}_E \ \mathbf{x} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x}$$

$$\mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{I}$$

3DOF (1 rotation, 2 translation)

special cases: pure rotation, pure translation

Invariants: length, angle, area

Transformation hierarchy: similarities

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(isometry + scale)

$$\mathbf{x'} = \mathbf{H}_{s} \ \mathbf{x} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ 0^{\mathsf{T}} & \mathbf{1} \end{bmatrix} \mathbf{x}$$

$$\mathbf{R}^{\mathsf{T}}\mathbf{R} = \mathbf{I}$$

Invariants: ratios of length, angle, ratios of areas, parallel lines

Transformation hierarchy: affine transformations

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
$$\mathbf{x'} = \mathbf{H}_A \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & \mathbf{1} \end{bmatrix} \mathbf{x}$$

$$\mathbf{H}_A \mathbf{X} = \begin{bmatrix} 0^\mathsf{T} & \mathbf{1} \end{bmatrix}^{\mathbf{X}}$$

$$\mathbf{A} = \mathbf{R}(\theta)\mathbf{R}(-\phi)\mathbf{D}\mathbf{R}(\phi) \qquad \mathbf{D} = \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda \end{vmatrix}$$

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

6DOF (2 scale, 2 rotation, 2 translation)

non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths, ratios of areas

Transformation hierarchy: homographies

$$\mathbf{H}_{P} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{A} & \vec{t} \\ \vec{v}^{T} & v \end{pmatrix}$$
anges

Changes homogeneous coordinate!

$$\mathbf{x'} = \mathbf{H}_P \mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^\mathsf{T} & \mathbf{v} \end{bmatrix} \mathbf{x} \qquad \mathbf{v} = (v_1, v_2)^\mathsf{T}$$

Invariants: cross-ratio of four points on a line (ratio of ratio)

Allows to observe vanishing points, horizon

2D transformation hierarchy

A square transforms to:

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Affine 6dof

$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Similarity 4dof

$$\begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Euclidean 3dof

$$egin{bmatrix} r_{11} & r_{12} & t_x \ r_{21} & r_{22} & t_y \ 0 & 0 & 1 \ \end{bmatrix}$$

Before:

What is a homography and how does it act on vectors/points

Now:

- How to estimate a homography from point correspondences
- Same procedure as for P-matrix

Homography estimation

Estimate homography from point correspondences between:

Homography estimation

 Homography mapping from image to image (holds under planar camera motion as mentioned before):

$$x' \propto Hx$$

$$\lambda \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homography estimation

9 entries, 8 degrees of freedom

$$\mathbf{x}_i' \times \mathbf{H} \ \mathbf{x}_i = 0$$

(scale is arbitrary)
$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = 0$$

$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = \begin{bmatrix} y_{i}' \mathbf{h}^{3^{\mathsf{T}}} \mathbf{x}_{i} - w_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} \\ w_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i} - x_{i}' \mathbf{h}^{3^{\mathsf{T}}} \mathbf{x}_{i} \\ x_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i} \end{bmatrix}$$

$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = 0$$

$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = \begin{bmatrix} y_{i}' \mathbf{h}^{3^{\mathsf{T}}} \mathbf{x}_{i} - w_{i}' \mathbf{h}^{3^{\mathsf{T}}} \mathbf{x}_{i} \\ x_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i} \end{bmatrix}$$

$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = 0$$

$$\mathbf{x}_{i}' \times \mathbf{H} \mathbf{x}_{i} = 0$$

$$\mathbf{x}_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i}$$

$$\mathbf{h}^{2} = 0$$

$$\mathbf{x}_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i}$$

$$\mathbf{h}^{2} = 0$$

$$\mathbf{x}_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i}$$

$$\mathbf{h}^{2} = 0$$

$$\mathbf{x}_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i}$$

$$\mathbf{h}^{2} = 0$$

$$\mathbf{x}_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i}$$

$$\mathbf{h}^{2} = 0$$

$$\mathbf{x}_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i}$$

$$\mathbf{h}^{2} = 0$$

$$\mathbf{x}_{i}' \mathbf{h}^{2^{\mathsf{T}}} \mathbf{x}_{i} - y_{i}' \mathbf{h}^{1^{\mathsf{T}}} \mathbf{x}_{i}$$

$$\mathbf{h}^{2} = 0$$

$$\mathbf{h}^{3} = 0$$

$$\lambda \mathbf{x}_i' = \mathbf{H} \mathbf{x}_i = \begin{bmatrix} \mathbf{h}_1^T \\ \mathbf{h}_2^T \\ \mathbf{h}_3^T \end{bmatrix} \mathbf{x}$$
Homogeneous

coordinate, might be 1

$$\begin{cases} y_i' h^{3^{\mathsf{T}}} \mathbf{x}_i - w_i' h^{2^{\mathsf{T}}} \mathbf{x}_i \\ w_i' h^{1^{\mathsf{T}}} \mathbf{x}_i - x_i' h^{3^{\mathsf{T}}} \mathbf{x}_i \\ x_i' h^{2^{\mathsf{T}}} \mathbf{x}_i - y_i' h^{1^{\mathsf{T}}} \mathbf{x}_i \end{cases}$$

Direct linear transform

$$\begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{bmatrix} h = 0 \Rightarrow Ah = 0$$

- H has 8 DOF (9 parameters, but scale is arbitrary)
- One correspondence gives two linearly independent equations
- Four matches needed for a minimal solution (null space of 8x9 matrix)
- More points: search for "best" according to some cost function

Direct linear transform

- No exact solution because of inexact measurements due to noise
- With n correspondences: size A is 2nx9, rank most likely not 8

$$\begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{bmatrix} h = 0 \quad Ah = 0$$

- Find approximate solution

 - Additional constraint needed to avoid 0, e.g. $\left\|h\right\|=1$ Ah=0 not possible, so minimize $\left\|Ah\right\|$

DLT algorithm

Objective

Given $n\geq 4$ 2D to 2D point correspondences $\{x_i\leftrightarrow x_i'\}$, determine the 2D homography matrix H such that $x_i'=Hx_i$

Algorithm

- (i) For each correspondence $x_i \leftrightarrow x_i'$ compute A_i . Usually only two first rows needed.
- (ii) Assemble n 2x9 matrices A_i into a single 2nx9 matrix A_i
- (iii) Obtain SVD of A. Solution for h is last column of V,
 =singular value of A
 =eigen vector to the smallest eigen value of A^TA
- (iv) Determine H from h

Inhomogeneous solution

Since h can only be computed up to scale, impose constraint pick $h_j=1$, e.g. $h_9=1$, and solve for 8-vector

$$\begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & x_i x_i' & y_i x_i' \end{bmatrix} \tilde{\mathbf{h}} = \begin{pmatrix} -w_i y_i' \\ w_i x_i' \end{pmatrix}$$

Can be solved using linear least-squares

However, if h_9 =0 this approach fails Also poor results if h_9 close to zero Therefore, not recommended

And what now?

What can we do when knowing the homography between two images

Application (1): panorama stitching

Panorama stitching:

- Undistort images
- 2. Find point correspondences between images
- 3. Compute homography H
- 4. Resample:
 - 1. Loop over image 1
 - 2. Project into image 2 using H
 - 3. Bilinear interpolation in image 2

Application (2): camera pose estimation

- Assuming that K (intrinsic calibration matrix) is known, derive the 3D camera pose from H
- Enables augmentation of 3D virtual objects (augmented reality)
 - Set virtual camera to real camera
 - Render virtual scene
 - Compose with real image
- Enables localization/navigation
- Recall the two cases of planar motion:
 - purely rotating camera, arbitrary scene
 - Rotating and translating camera, planar scene

Camera pose estimation

Purely rotating camera:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Camera pose estimation

• Planar scene (example marker tracker, applies to any planar scene):

Camera pose estimation

Assume all points lie in one plane with Z=0:

$$X = (X, Y, 0, 1)$$

$$x = PX$$

$$= K[\mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_3 \mathbf{t}] \begin{pmatrix} X \\ Y \\ 0 \\ 1 \end{pmatrix}$$

$$= K[\mathbf{r}_1 \mathbf{r}_2 \mathbf{t}] \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$$

$$= H \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$$

$$m{H} = \lambda m{K} [m{r}_1 m{r}_2 m{t}]$$

 $m{K}^{-1} m{H} = \lambda [m{r}_1 m{r}_2 m{t}]$

- -r₁ and r₂ are unit vectors ⇒ find lambda
- –Use this to compute t
 - —Rotation matrices are orthogonal ⇒ find r3

$$P = K \begin{bmatrix} r_1 & r_2 & (r_1 \times r_2) & t \end{bmatrix}$$

Problems

- Problem:
 - The vectors r_1 and r_2 might not yield the same lambda
- Solution:
 - Use the average value
- Problem:
 - The estimated rotation matrix might not be orthogonal
- Solution: orthogonalize R'
 - Obtain SVD \Rightarrow R'=UWV^T
 - Set singular values to 1 ⇒ R=UV^T

Example: marker tracker

Example: natural feature tracking

Life image with augmentations

Virtual scene

References

- Homography estimation from planes:
 - Zhang: Flexible camera calibration by viewing a plane from unknown orientations, ICCV, 1999.
- Homography estimation from purely rotating camera
 - Hartley: Self-Calibration from Multiple Views with a Rotating Camera,
 ECCV, 1994
 - Brown and Lowe: Recognizing Panoramas, ICCV, 2003.

Thank you!

Next lecture:

Linear/nonlinear/robust estimation techniques